
dojot Documentation
Release 0.3.0

Matheus Magalhaes

Apr 01, 2019

Contents:

1 Architecture 3
1.1 Components . 4
1.2 Infrastructure . 7
1.3 Communications . 7

2 IoT Agent architecture 9
2.1 TODO . 9
2.2 Who should read this? . 9
2.3 Introduction . 9
2.4 Device security . 10
2.5 Information context separation . 12
2.6 IoT agent information and management . 12
2.7 IoT agent operation . 13
2.8 Behavior . 17

3 Concepts 19
3.1 dojot basics . 19

4 Components and APIs 23
4.1 Components . 23
4.2 Exposed APIs . 24
4.3 Kafka messages . 24

5 Internal communication 25
5.1 Components . 25
5.2 Messaging and authentication . 26
5.3 Auth + API gateway (Kong) . 30
5.4 Device Manager . 33
5.5 IoT agent . 33
5.6 Persister . 35
5.7 History . 35
5.8 Data Broker . 35
5.9 Flowbroker . 37

6 Installation Guide 39
6.1 Hardware requirements . 40
6.2 Docker compose . 40

i

6.3 Kubernetes . 42

7 Frequently Asked Questions 45
7.1 General . 46
7.2 Usage . 47
7.3 Devices . 48
7.4 Data Flows . 50
7.5 Applications . 52

8 Release history 55
8.1 battojutsu - 2018.10.03 . 55

9 Using web interface 57
9.1 Device management . 57
9.2 Flow configuration . 60

10 Using API interface 61
10.1 Getting access token . 61
10.2 Device creation . 62
10.3 Sending messages . 64
10.4 Checking historical data . 64

11 Using flow builder 67
11.1 Dojot nodes . 67
11.2 Learn by examples . 74

ii

dojot Documentation, Release 0.3.0

This is the high-level documentation for dojot IoT platform developed by CPqD. This platform aims to provide the
application and device developers with a more concise and integrated interaction, while benefiting for a highly cus-
tomizable and efficient infrastructure.

Contents: 1

dojot Documentation, Release 0.3.0

2 Contents:

CHAPTER 1

Architecture

This document describes the current architecture that guides the platform implementation, detailing the components
that comprise the solution, as well as their functionalities and how each of them contribute to the platform as a whole.

While a brief explanation of each component is provided, this high level description does not explain (or aims to
explain) the minutia of each component’s implementation. For that, please refer to each component’s own documen-
tation.

Table of Contents

• Components

– Kafka + DataBroker

– DeviceManager

– IoT Agent

– User Authorization Service

– flowbroker

– History

– Logging and Auditing Service

– Kong API Gateway

– GUI

– Elastic Service Controller

– Alarm Management

– Image manager

• Infrastructure

• Communications

3

dojot Documentation, Release 0.3.0

1.1 Components

dojot was designed to make fast solution prototyping possible, providing a platform that’s easy to use, scalable and
robust. Its internal architecture makes use of many well-known open-source components with others designed and
implemented by dojot team. This architecture is described on Fig. 1.1.

Fig. 1.1: Current Architecture

Using dojot is as follows: a user configures IoT devices through the GUI or directly using the REST APIs provided
by the API Gateway. Data processing flows might be also configured - these entities can perform a variety of actions,
such as generate notifications when a particular device attribute reaches a certain threshold or save all data generated
by a device onto an external database. As devices start sending their readings to dojot, a user can:

• receive these readings via notifications generated by subscriptions;

• consolidate all data into virtual devices;

• gather all data from historical database, and so on.

These features can be used through REST APIs - these are the basic building blocks that any application based on
dojot should use. dojot GUI provides an easy way to perform management operations for all entities related to the
platform (users, devices, templates and flows) and can also be used to check if everything is working fine.

The user context are isolated and there is no data sharing, the access credentials are validated by the authorization
service for each and every operation (API Request). Therefore, a user belonging to a particular context (tenant) cannot

4 Chapter 1. Architecture

dojot Documentation, Release 0.3.0

reach any data (including devices, templates, flows or any other data related to these resources) from other ones.

Once devices are configured, the IoT Agent is capable of mapping the data received from devices, encapsulated on
MQTT for example, and send them to the message broker for internal distribution. This way, the data reaches the
history service, for instance, so it can persist the data on a database.

For more information about what’s going on with dojot, you should take a look at dojot GitHub repository. There
you’ll find all components used in dojot.

Each one of the components that are part of the architecture are briefly described on the sub-sections below.

1.1.1 Kafka + DataBroker

Apache Kafka is a distributed messaging platform that can be used by applications which need to stream data or
consume/produce data pipelines. In comparison with other open-source messaging solutions, Kafka seems to be more
appropriate to fulfil dojot’s architectural requirements (responsibility isolation, simplicity, and so on).

In Kafka, a specialized topics structure is used to insure isolation between different users and applications data, en-
abling a multi-tenant infrastructure.

The DataBroker service makes use of an in-memory database for efficiency. It adds context to Apache Kafka, making
it possible that internal or even external services are able to subscribe or query data based on context. DataBroker is
also a distributed service to avoid it being a single point of failure or even a bottleneck for the architecture.

1.1.2 DeviceManager

DeviceManager is a core entity which is responsible for keeping device and templates data models. It is also respon-
sible for publishing any updates to all interested components (namely IoT agents, history and subscription manager)
through Kafka.

This service is stateless, having its data persisted to a database, with data isolation for users and applications, making
possible a multi-tenant architecture for the middleware.

1.1.3 IoT Agent

An IoT agent is an adaptation service between physical devices and dojot’s core components. It could be understood
as a device driver for a set of devices. The dojot platform can have multiple iot-agents, each one of them being
specialized in a specific protocol like, for instance, MQTT/JSON, CoAP/LWM2M and HTTP/JSON.

It is also responsible to ensure that it communicates with devices using secure channels.

1.1.4 User Authorization Service

This service is responsible for managing user profiles and access control. Basically any API call that reaches the
platform via the API Gateway is validated by this service.

To be able to deal with a high volume of authorization calls, it uses caching, it is stateless and it is scalable horizontally.
Its data is stored on a database.

1.1.5 flowbroker

This service provides mechanisms to build data processing flows to perform a set of actions. These flows can be
extended using external processing blocks (which can be added using REST APIs).

1.1. Components 5

https://github.com/dojot

dojot Documentation, Release 0.3.0

1.1.6 History

The History component works as a pipeline for data and events that must be persisted on a database. The data is
converted into an storage structure and is sent to the corresponding database.

For internal storage, the MongoDB non-relational database is being used, it allows a Sharded Cluster configuration
that may be required according to the use case.

The data may also be directed to databases that are external do the dojot platform, requiring only a proper configuration
of Logstash and the data model to be used.

1.1.7 Logging and Auditing Service

All the services that are part of the dojot platform can generate usage metrics of its resources that can be used by a
logging and auditing service, which process this registers and summarize then based on users and applications.

The consolidated data is presented back to the services, allowing then, for example, to expose this data to the user via
a graphical interface, to limit the usage of the system based on resource consumption and quotas associated with users
or even to be used by billing services to charge users for the utilization of the platform.

Such components are currently in development.

1.1.8 Kong API Gateway

The Kong API Gateways is used as the entry point for applications and external services to reach the services that are
internal to the dojot platform, resulting in multiple advantages like, for instance, single access point and ease when
applying rules over the API calls like traffic rate limitation and access control.

1.1.9 GUI

The Graphical User Interface in dojot is responsible for providing responsive interfaces to manage the platform, in-
cluding functionalities like:

• User Profile Management: define profiles and the API permission associated to those profiles

• User Management: Creation, Visualization, Edition and Deletion Operations

• Applications Management: Creation, Visualization, Edition and Deletion Operations

• Device Models Management: Creation, Visualization, Edition and Deletion Operations

• Devices Management: Creation, Visualization (real time data), Edition and Deletion Operations

• Processing Flows Management: Creation, Visualization, Edition and Deletion Operations

1.1.10 Elastic Service Controller

This is a service specialized for cloud environments, that is capable of monitoring the utilization of the platform, being
able to increase or decrease its storage and processing capacity in an dynamic and automatic fashion to adapt to the
variability on the demand.

This controller depends that the dojot platform services are horizontally scalable, as well as the databases must be
clusterizable, which match with the adopted architecture.

This component is currently scheduled for development.

6 Chapter 1. Architecture

dojot Documentation, Release 0.3.0

1.1.11 Alarm Management

This component is responsible for handling alarms generated by dojot’s internal components, such as IoT agents,
Device Manager, and so on.

This component is also scheduled for development.

1.1.12 Image manager

This component is responsible for device image storage and retrieval.

1.2 Infrastructure

A few extra components are used in dojot that were not shown in Fig. 1.1. They are:

• postgres: this database is used to persist data from many components, such as Device Manager.

• redis: in-memory database used as cache in many components, such as service orchestrator, subscription man-
ager, IoT agents, and so on. It is very light and easy to use.

• rabbitMQ: message broker used in service orchestrator in order to implement action flows related that should be
applied to messages received from components.

• mongo database: widly used database solution that is easy to use and doesn’t add a considerable access overhead
(where it was employed in dojot).

• zookeeper: keeps replicated services within a cluster under control.

1.3 Communications

All components communicate with each other in two ways:

• Using HTTP requests: if one component needs to retrieve data from other one, say an IoT agent needs the list of
currently configured devices from Device Manager, it can send a HTTP request to the appropriate component.

• Using Kafka messages: if one component needs to send new information about a resource controlled by it (such
as new devices created in Device Manager), the component may publish this data through Kafka. Using this
mechanism, any other component that is interested in such information needs only to listen to a particular topic
to receive it. Note that this mechanism doesn’t make any hard associations between components. For instance,
Device Manager doesn’t know which components need its information, and an IoT agent doesn’t need to know
which component is sending data through a particular topic.

1.2. Infrastructure 7

dojot Documentation, Release 0.3.0

8 Chapter 1. Architecture

CHAPTER 2

IoT Agent architecture

This document describes the IoT agent architecture used by dojot. It defines a set of basic features and choices that
must be followed in order to be aligned with dojot architecture.

2.1 TODO

• Sanitize “device” and “physical device” terms. Sometimes they are used interchangeably.

• Build a list of terms (so that I can just say “blingblong” meaning “physical devices or its representative elements)

• Find a better term for “representative elements”

• Fill the Device identity section

• Select what SHOULD be done, what MAY be implemented or SHALL be presented

2.2 Who should read this?

Developers that want to create new IoT agents to be used with dojot.

2.3 Introduction

Using dojot involves dealing with the following entities:

• physical devices: devices that sends messages to IoT agents. They might have sensors and might be config-
urable, but this is not mandatory. Also, they must have some kind of connectivity to other services so that they
can send their readings to these services.

• users: whoever sends requests to dojot in order to manage resources, retrieve historical device data, create
subscriptions, manage flows, and so on.

• tenants: logical separation between resources that might be associated with multiple users.

9

dojot Documentation, Release 0.3.0

• resources: elements that are associated to a particular entity. They are:

– devices: representation of a element which has attributes. This element can be a physical device or a virtual
one - one that doesn’t receive attribute updates directly by a device.

– templates: device blueprints that contain a list of attributes associated to that class of devices. All devices
are created based on a template, from which it will inherit attributes.

– topics: Kafka communication channels that are used to send and receive messages between dojot services.

– flows: Sequence of processing blocks that are created by a user or an application and are used to analyze
and preprocess data.

• subjects: group of topics that share a common message flow. For instance, there might be many topics that are
used to transmit device data. All of them belong to the same subject “device-data”.

When a new IoT agent is created, all these entities must be taken into account in a coordinated way. This document
lists all basic requirements for a new IoT agent and they are categorized in the following groups:

1. Device security: IoT agents must be able to check whether a device connection is valid or not. A valid device
connection is defined as one originated by a trusted physical device (or any representative element, such as
gateways) which is allowed to connect to the IoT agent. A device is deemed as trusted by: (1) creating a device
associated with it (which may include security information such as cryptographic keys) or (2) indicating directly
to IoT agent that a device or a representative element is allowed to connect to it (so that elements that serves as
relay connections can be properly and securely used).

2. Information context separation: each resource (device, templates, topics and flows) is associated to a particular
tenant and entities that don’t belong to that tenant must not be allowed to access its resources. This is valid
throughout dojot and it is no exception for IoT agents. Therefore, an IoT agent must treat separately all devices
that belong to different tenants - including the fact that no one from one tenant should be able to know of the
existence of other tenants. For instance, a MQTT IoT agent should not allow messages sent to its broker from
devices associated to tenant A to be published to devices subscribed to the same topic belonging to tenant B.

3. IoT agent information and management: any IoT agent should publish its capabilities and information mod-
els. For instance, it should let other services know about what is the device template which it accepts in order to
properly receive and send messages to a particular physical device. It should also offer a management interface
so that a user can change and retrieve its behavior, such as logging options, statistics, quotas and so on.

4. IoT agent operation: IoT agents must be able to receive and send messages (if allowed by the protocol) to
devices and, therefore, send updates to other dojot services based on received device messages. All messages
received from a particular device and sent to other dojot services must be sent in the same order as it was
received. IoT agents should also be able to enable or disable message processing from a particular device and
detect device liveness.

An extra feature that an IoT agent might implement is firmware updates. Depending on is underlying protocol,
it might be possible to do such thing in a easy, secure and reliable way.

Each one of these groups is going to be detailed in the following sections.

2.4 Device security

An IoT manager should take into account the following aspects of device communication:

1. Device identity: it should only accept connections from authorized physical devices. The verification of whether
a new connection was originated by an authorized device (which includes verifying whether a particular device
is authorized or not) should rely on public keys and/or signed certificates.

2. Communication channel security: all messages exchanged with a physical device should be encrypted using
well-known cryptographic standards, such as TLS. Any in-house security protocols should be avoided.

10 Chapter 2. IoT Agent architecture

dojot Documentation, Release 0.3.0

3. Certificate revocation: the IoT agent should be able to discard any messages from previously authorized device
if its security data has been somehow compromised. For instance, if the private key associated to a particular
device is leaked, then all its messages should be ignored as there is no guarantee that they came from that device.

Each of these aspects will be detailed in the following sections.

2.4.1 Device identity

The device identity verification is the starting point when dealing with communication security. This validation will
indicate to the IoT agent if the device that opened the connection is whoever it says it is. Furthermore, the IoT agent
must, once this validation succeeds, check whether this device can connect to it by checking its ID. This section will
show how to do that.

For connection-oriented protocols, the IoT agent should only accept connections for devices that have a certificate that
was signed by an authority that is trusted by dojot. Once this certificate is valid, device identity can be checked in two
forms:

• Device ID encoded in certificate: although this is a less-reliable mechanism, it allows greater flexibility using
many devices in a controlled deployment. This is based on setting the common name (CN certificate field)
as dojot device ID. Therefore, IoT agent should check whether this device exists or not and allow or deny the
connection right away depending on this verification. The weak points of this mechanisms is that the device
certificate must be signed by dojot’s internal CA (once there is a procedure to sign only one certificate per device)
and, if this certificate is valid, then its ID must also be valid. If any other CA is used, then this mechanism has
no valid use.

• IoT agent has all valid certificates: if an administrator wants to use an external CA to sign all device certificates,
then there is no actual control of which device ID was used to generate a particular certificate. Therefore, IoT
agent must have all valid certificates properly mapped onto a device list - this will guarantee that only one
certificate is allowed to a particular device and vice-versa.

Using the first mechanism, the device (or an operator configuring a device for the first time) must call dojot CA to
generate a signed certificate for itself. There is no further action for IoT agent to take as long as dojot CA is used.

The second mechanism, however, requires that an IoT agent offer methods to manage certificates. The developer must
take into account also that this IoT agent must be able to scale - these certificates must be accessible to all IoT agent
instances, if allowed by deployment.

2.4.2 Communication security

With a valid certificate, a device can create a communication channel with dojot. For connection-oriented channels,
this certificate should be used alongside cryptographic keys in order to provide an encrypted channel. For other channel
types (such as channels for exchanging messages through a gateway, such as LoRa or sigfox), it suffice to be sure that
the connection between dojot and the backend server is secure. The backend identity should be asserted beforehand.
Once it is known to be trusted, all its messages can be processed with no major concern.

2.4.3 Certificate revocation

An IoT agent should be able to be informed about revoked certificates. It should expose an API or configuration
messages to allow such thing. It should not allow any communication with a particular device that uses a revoked
certificate.

2.4. Device security 11

dojot Documentation, Release 0.3.0

2.5 Information context separation

A tenant could be thought simply as a group of users that share some resources. But its meaning might go beyond that
- it might implies that these resources would not share any common infrastructure (considering anything that transmits,
processes or stores data) with resources belonging to other tenants. One might want to have separate software instances
to process data from different tenants so that processing data from one tenant will not affect processing data from the
other, achieving a higher level of context separation.

Although this is desirable, some deployment scenarios might force using some of the same infrastructure for different
tenants (for instance, when the deployment has as reduced numbers of processing units or network connections). So,
in order to have a minimum context separation among tenants, an IoT agent should use everything it can to separate
them, such as using different threads, queues, sockets, etc., and should not rely solely in deployment scenarios features
(such as different IoT agents for different tenants). For instance, for topic based protocols, such as MQTT, one might
want to force different topics for different tenants. Should a device publish data to a particular topic that is owned by
other tenant, this message is ignored or blocked (sending an error back to the device might be an optional behavior).
Therefore no device from one tenant can send messages to any device from other tenant.

The mechanism through which context separation is implemented highly depends on which protocol is used. A
thorough analysis should be performed to properly implement this feature.

2.6 IoT agent information and management

An IoT agent should expose all the necessary information to use it properly. It should expose:

• Device template: an IoT agent should publish which is the data model it accepts for a valid device. This should
be done by publishing a new device template to other dojot services. There should be a mechanism so that
different instances of the same IoT agent publishes the same device template (including any template IDs). If
the device template is updated in a newer version of an IoT agent, the device template ID should change. The
messages used to publish its device template is detailed in ‘Device Template message‘_ section.

• Management APIs: an IoT agent should be manageable and should expose its APIs to do that. The minimum
set of management APIs that an IoT agent should offer are:

– Logging: there should be a way to change the log level of an IoT agent;

– Statistics: an IoT agent may expose an API to let a user or application retrieve statistical information about
its execution. An administrator might want to switch on or off the generation of a particular statistical
variable, such as processing time.

An IoT agent should also be able to gather statistics information related to its execution. Furthermore, it should let an
administrator set quotas on those measured quantities. These quantities might include, but are not limited to:

• transmission statistics

– number of received device messages from device (total, per device, per tenant)

– number of published device messages to dojot (total, per device, per tenant)

– number of messages sent to devices (total, per device, per tenant)

– [optional] time taken between receiving a message from a physical device and publishing it (total - mean,
per device - mean, per tenant - mean)

• IoT agent service health check - system statistics (memory, disk, etc.) used by the service

Many other values might be gathered. The list above is the minimum list that an IoT agent is expected to expose to
other services. Particularly for health check, there is a document detailing how expose it.

12 Chapter 2. IoT Agent architecture

dojot Documentation, Release 0.3.0

2.7 IoT agent operation

The main purpose of an IoT agent is to publish data from a particular device to other dojot services. Its operation is
two fold: receive and process messages related to device management from other services as well as receive messages
from the devices themselves (or their representative elements) and publish these data to other services. This is shown
in the figure below.

<< a figure should be here >>

The following sections describe how an IoT agent can send and receive messages to/from other dojot services and
what are the considerations it must take into account when receiving messages from physical devices.

2.7.1 Messages

At start, all IoT agents (in fact, all services that need to receive or send messages related to devices) must know the
list of configured tenants. This is the most basic piece of information that IoT agent needs to know in order to work
properly. The request that should be sent to Auth service is this (all requests sent from dojot services to its own services
should use the “dojot-management” user):

Host: Auth
Endpoint: /admin/tenants Method: GET
Request
Headers Authorization: Bearer ${JWT}
Response
Headers Content-Type: application/json
Body format

tenants => *tenant
tenant => string

A sample response for this request is:

{
"tenants": [
"admin",
"users",
"system"

]
}

With this list, the IoT agent can request topics for receiving device and tenant lifecycle events and for publishing new
device attribute data. This is done by sending the following request to DataBroker:

Host: DataBroker
Endpoint: /topic/{subject} Method: GET
Request
Headers Authorization: Bearer ${JWT}
Response
Headers Content-Type: application/json
Body format

topic => string

2.7. IoT agent operation 13

dojot Documentation, Release 0.3.0

A sample response for this request is:

{
"topic": "c9b2c688-9e40-4032-877a-3d262acba9d0"

}

Some subjects are “tenant-sensitive” (a different topic will be returned for different tenants) and some are not (the
same topic will be returned regardless the tenant). DataBroker will use the tenant contained in the authorization token
when dealing with tenant-sensitive subjects.

The following subjects should be used by IoT agents:

• dojot.tenancy

• dojot.device-manager.device-template

• dojot.device-manager.device

• device-data

Each one will be detailed in the following sections

dojot.tenancy

The topic related to this subject will be used to receive tenant lifecycle events. Whenever a new tenant is created or
delete, the following message will be published:

Subject: dojot.tenancy
Body format (JSON)

type="CREATE"/"DELETE"
tenant=>string

This subject is not tenant-sensitive. A sample message received by this topic is:

{
"type": "CREATE",
"tenant": "new_tenant"

}

dojot.device-manager.device-template

Subject: dojot.device-manager.device-template
Body format (JSON)

event => "create"
data => id label attrs
id => string
label => string
attrs => [*template_attrs]

dojot.device-manager.devices

the topic related to this subject will be used to receive device lifecycle events for a particular tenant. Its format is:

14 Chapter 2. IoT Agent architecture

dojot Documentation, Release 0.3.0

Subject: dojot.device-manager.device
Body format (JSON)

event => "create" / "update"
meta => service
service => string

data => id label templates attrs created
id => string
label => string
templates => *number
attrs => [*template_attrs]
created => iso_date

Body format (JSON)
event => "remove"
meta => service
service => string

data => id
id => string

Body format (JSON)
event => "actuate"
meta => service
service => string

data => id
id => string
attrs => *device_attrs

The template_attrs is a simple key/value JSON with template ID as key and the following structure as value:

{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "this-is-a-sample-attribute",
"value_type": "float",
"type": "dynamic",
"id": 1

}

The device_attrs attribute is a even simpler key/value JSON, such as:

{
"temperature" : 10,
"height" : 280

}

This subject is tenant-sensitive.

A sample message received by this topic is:

{
"event": "create",
"meta": {
"service": "admin"

},
"data": {
"id": "efac",

(continues on next page)

2.7. IoT agent operation 15

dojot Documentation, Release 0.3.0

(continued from previous page)

"label": "Device 1",
"templates": [1, 2, 3],
"attrs": {

"1": [
{
"template_id": "1",
"created": "2018-01-05T15:41:54.840116+00:00",
"label": "this-is-a-sample-attribute",
"value_type": "float",
"type": "dynamic",
"id": 1

}
]

},
"created": "2018-02-06T10:43:40.890330+00:00"

}
}

device-data

The topic related to this subject will be used to publish data retrieved from a physical device to other dojot services.
Its format is:

Subject: device-data
Body format (JSON)

metadata => deviceid tenant timestamp
→˓recv_time
deviceid => string
tenant => string
timestamp => unix_timestamp
recv_time => unix_timestamp

attrs => *device_attrs

This subject is tenant-sensitive. The timestamp is associated to when the attribute values were gathered by the device
(this could be done by the device itself or by the IoT agent, if no timestamp was defined by the device). The recv_time
attribute indicates when the message was received.

A sample message received by this topic is:

{
"metadata": {
"deviceid": "c6ea4b",
"tenant": "admin",
"timestamp": 1528226137452,
"recv_time": 1528226137462

},
"attrs": {
"humidity": 60

}
}

16 Chapter 2. IoT Agent architecture

dojot Documentation, Release 0.3.0

2.7.2 Firmware update

An IoT agent might implement mechanisms in order to update firmware in devices.

The firmware update process should be:

•

2.8 Behavior

The order in which a physical device sends its attributes must not be changed when IoT agent publishes these data to
other dojot services.

If the protocol imposes any unique ID to each device, the IoT agent must build a correlation table to properly translate
this unique ID into dojot device ID and vice-versa.

2.8. Behavior 17

dojot Documentation, Release 0.3.0

18 Chapter 2. IoT Agent architecture

CHAPTER 3

Concepts

This document provides information about dojot’s concepts and abstractions.

Table of Contents

• dojot basics

– User authentication

– Devices and templates

– Flows

Note:

• Audience

– Users that want to take a look at how dojot works;

– Application developers.

• Level: basic

3.1 dojot basics

Before using dojot, you should be familiar with some basic operations and concepts. They are very simple to under-
stand and use, but without them, all operations might become obscure and senseless.

In the next section, there is an explanation of a few basic entities in dojot: devices, templates and flows. With these
concepts in mind, we present a small tutorial to how to use them in dojot - it only covers API access. There a GUI
oriented tutorial in Using web interface tutorial.

19

dojot Documentation, Release 0.3.0

If you want more information on how dojot works internally, you should checkout the Architecture to get acquainted
with all internal components.

3.1.1 User authentication

All HTTP requests supported by dojot are sent to the API gateway. In order to control which user should access which
endpoints and resources, dojot makes uses of JSON Web Token (a useful tool is jwt.io) which encodes things like (not
limited to these):

• User identity

• Validation data

• Token expiration date

The component responsible for user authentication is auth. You can find a tutorial of how to authenticate a user and
how to get an access token in auth documentation.

3.1.2 Devices and templates

In dojot, a device is a digital representation of an actual device or gateway with one or more sensors or of a virtual one
with sensors/attributes inferred from other devices. Throughout the documentation, this kind of device will be called
simply as ‘device’. If the actual device must be referenced, we’ll be calling it as ‘physical device’.

Consider, for instance, a physical device with temperature and humidity sensors; it can be represented in dojot as a
device with two attributes (one for each sensor). We call this kind of device as regular device or by its communication
protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their physical counterparts, for instance, we can create
one with higher level of information of temperature (is becoming hotter or is becoming colder) whose values are
inferred from temperature sensors of other devices. This kind of device is called virtual device.

All devices are created based on a template, which can be thought as a model of a device. As “model” we could think
of part numbers or product models - one prototype from which devices are created. Templates in dojot have one label
(any alphanumeric sequence), a list of attributes which will hold all the device emitted information, and optionally a
few special attributes which will indicate how the device communicates, including transmission methods (protocol,
ports, etc.) and message formats.

In fact, templates can represent not only “device models”, but it can also abstract a “class of devices”. For instance,
we could have one template to represent all thermometers that will be used in dojot. This template would have only
one attribute called, let’s say, “temperature”. While creating the device, the user would select its “physical template”,
let’s say TexasInstr882, and the ‘thermometer’ template. The user would have also to add translation instructions
(implemented in terms of data flows, build in flowbuilder) in order to map the temperature reading that will be sent
from the device to a “temperature” attribute.

In order to create a device, a user selects which templates are going to compose this new device. All their attributes
are merged together and associated to it - they are tightly linked to the original template so that any template update
will reflect all associated devices.

The component responsible for managing devices (both real and virtual) and templates is DeviceManager. DeviceM-
anager documentation explains in more depth all the available operations.

3.1.3 Flows

A flow is a sequence of blocks that process a particular event or device message. It contains:

• entry point: a block representing what is the trigger to start a particular flow;

20 Chapter 3. Concepts

https://tools.ietf.org/html/rfc7519
https://jwt.io/
https://github.com/dojot/auth
http://dojotdocs.readthedocs.io/projects/auth/
https://github.com/dojot/device-manager
http://dojotdocs.readthedocs.io/projects/DeviceManager/
http://dojotdocs.readthedocs.io/projects/DeviceManager/

dojot Documentation, Release 0.3.0

• processing blocks: a set of blocks that perform operations using the event. These blocks may or may not use
the contents of such event to further process it. The operations might be: testing content for particular values or
ranges, geo-positioning analysis, changing message attributes, perform operations on external elements, and so
on.

• exit point: a block representing where the resulting data should be forwarded to. This block might be a database,
a virtual device, an external element, and so on.

The component responsible for dealing with such flows is flowbroker.

3.1. dojot basics 21

https://github.com/dojot/flowbroker

dojot Documentation, Release 0.3.0

22 Chapter 3. Concepts

CHAPTER 4

Components and APIs

4.1 Components

Table 4.1: Components
Component Repository / Main site Documentation
MongoDB MongoDB official site MongoDB documentation
postgres PostgreSQL official site PostgreSQL documentation
Kong API gateway (Community Edition) Kong official site Kong documentation
redis Redis official site Redis documentation
zookeeper Zookeeper official site Zookeeper documentation
Kafka Kafka official site Kafka documentation
auth GitHub - auth readthedocs - auth
History GitHub - history
DeviceManager GitHub - DeviceManager readthedocs - DeviceManager
Image manager GitHub - image-manager
GUI GitHub - GUI
Flow broker GitHub - flowbroker
Data broker GitHub - data-broker
iotagent-mosca GitHub - iotagent-mosca
EJBCA-REST GitHub - EJBCA-REST
Alarm manager GitHub - alarm-manager

23

https://www.mongodb.com/
https://docs.mongodb.com/manual/
https://www.postgresql.org
https://www.postgresql.org/docs/
https://konghq.com/kong-community-edition/
https://getkong.org/docs/
https://redis.io/
https://redis.io/documentation
https://zookeeper.apache.org/
https://zookeeper.apache.org/documentation.html
https://kafka.apache.org/
http://kafka.apache.org/documentation/
https://github.com/dojot/auth
http://dojotdocs.readthedocs.io/projects/auth/en/latest/
https://github.com/dojot/history
https://github.com/dojot/device-manager
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/
https://github.com/dojot/image-manager
https://github.com/dojot/gui
https://github.com/dojot/flowbroker
https://github.com/dojot/data-broker
https://github.com/dojot/iotagent-mosca
https://github.com/dojot/ejbca-rest
https://github.com/dojot/alarm-manager

dojot Documentation, Release 0.3.0

4.2 Exposed APIs

Table 4.2: APIs :header-rows: 1
Endpoint Purpose Component API Repository
/device Device management API - DeviceManager GitHub - DeviceManager
/template Template management API - DeviceManager GitHub - DeviceManager
/flows Flow management API - flowbroker GitHub - flowbroker
/auth User authentication API - auth GitHub - auth
/auth/revoke User authentication API - auth GitHub - auth
/auth/user User authentication API - auth GitHub - auth
/history Device historical data API - history GitHub - history
/gui Graphical User Interface GitHub - GUI
/sign Public key signing API - EJBCA-REST GitHub - EJBCA-REST
/ca Certification-Auth. functions API - EJBCA-REST GitHub - EJBCA-REST
/image Device image management API - image-manager GitHub - image-manager

The API gateway used in dojot reroutes some of these endpoints so that they become uniform: all of them are accessible
through the same port (default is TCP port 8000) and have the same naming scheme. Each component, though, might
have something different in its configuration and API documentation. The following table shows which endpoint
exposed by the API gateway is mapped to which component endpoint.

Table 4.3: Original endpoints
Service Original endpoint Endpoint
DeviceManager host:5000/device host:8000/device
DeviceManager host:5000/template host:8000/template
mashup host:3000/ host:8000/flows
auth host:5000/ host:8000/auth
auth host:5000/auth/revoke host:8000/auth/revoke
auth host:5000/user host:8000/auth/user
STH host:8666/ host:8000/history
GUI host/ host:8000/gui
ejbca host:5583/sign host:8000/sign
ejbca host:5583/ca host:8000/ca

4.3 Kafka messages

These are the messages sent by components and their subjects. If you are developing a new internal component (such
as a new IoT agent), see API - data-broker to check how to receive messages sent by other components in dojot.

Table 4.4: Original endpoints
Component Message Subject
DeviceManager Device CRUD (Messages - DeviceManager) dojot.device-manager.device
iotagent-mosca Device data update (Messages - iotagent-mosca) device-data
auth Tenants creation/removal (Messages - auth) dojot.tenancy

24 Chapter 4. Components and APIs

https://dojot.github.io/device-manager/apiary_latest.html
https://github.com/dojot/device-manager
https://dojot.github.io/device-manager/apiary_latest.html
https://github.com/dojot/device-manager
https://dojot.github.io/flowbroker/apiary_latest.html
https://github.com/dojot/flowbroker
https://dojot.github.io/auth/apiary_latest.html
https://github.com/dojot/auth
https://dojot.github.io/auth/apiary_latest.html
https://github.com/dojot/auth
https://dojot.github.io/auth/apiary_latest.html
https://github.com/dojot/auth
https://dojot.github.io/history/apiary_latest.html
https://github.com/dojot/history
https://github.com/dojot/gui
https://dojot.github.io/ejbca-rest/apiary_latest.html
https://github.com/dojot/ejbca-rest
https://dojot.github.io/ejbca-rest/apiary_latest.html
https://github.com/dojot/ejbca-rest
https://dojot.github.io/image-manager/apiary_latest.html
https://github.com/dojot/image-manager
https://dojot.github.io/data-broker/apiary_latest.html
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/kafka-messages.html
http://dojotdocs.readthedocs.io/projects/iotagent-mosca/en/latest/operation.html#sending-messages-to-other-components-via-kafka
https://dojotdocs.readthedocs.io/projects/auth/en/latest/kafka-messages.html

CHAPTER 5

Internal communication

This page describes how each service in dojot communicate with each other.

5.1 Components

Current dojot components are shown in Fig. 5.1.

Fig. 5.1: dojot components

They are:

• Auth: authentication mechanism

• DeviceManager: device and template storage.

• Persister: component that stores all device-generated data.

• History: component that exposes all device-generated data.

• DataBroker: deals with subjects and Kafka topics, as well as socket.io connections.

• Flowbroker: handles flows (both CRUD and flow execution)

• IoT agents: agents for different protocols.

25

dojot Documentation, Release 0.3.0

Each service will be briefly described in this page. More information can be found in each component documentation.

5.2 Messaging and authentication

There are two methods through which dojot components can talk to each other: via HTTP REST requests and via
Kafka. They are intended for different purposes, though.

HTTP requests can be sent at boot time when a component want, for instance, information about particular resources,
such as list of devices or tenants. For that, they must know which component has which resource in order to retrieve
them correctly. This means - and this is a very important thing that drives architectural choices in dojot - that only
a single service is responsible for retrieving data models for a particular resource (note that a service might have
multiple instances, though). For example, DeviceManager is responsible for storing and retrieving information model
for devices and templates, FlowBroker for flow descriptions, History for historical data, and so on.

Kafka, in the other hand, allows loosely coupled communication between instances of services. This means that a
producer (whoever sends a message) does not know which components will receive its message. Furthermore, any
consumer doesn’t know who generated the message that it being ingested. This allows data to be transmitted based on
“interests”: a consumer is interested in ingesting messages with a particular subject (more on that later) and producers
will send messages to all components that are interested in it. Note that this mechanism allows multiple services to
emit messages with the same “subject”, as well as multiple services ingesting messages with the same “subject” with
no tricky workarounds whatsoever.

5.2.1 Sending HTTP requests

In order to send requests via HTTP, a service must create an access token, described here. There is no further consid-
erations beyond following the API description associated to each service. This can be seen in figure Fig. 5.2. Note
that all interactions depicted here are abstractions of the actual ones. Also, it should be noted that these interactions
are valid only for internal components. Any external service should use Kong as entrypoint.

This is a test

In this figure, a client retrieves an access token for user admin whose password is p4ssw0rd. After that, a user can
send a request to HTTP APIs using it. This is shown in Fig. 5.3. Note: the actual authorization mechanism is detailed
in Auth + API gateway (Kong).

In this figure, a client creates a new device using the token retrieved in Fig. 5.2. This request is analyzed by Kong,
which will invoke Auth to check whether the user set in the token is allowed to POST to /device endpoint. Only
after the approval of such request, Kong will forward it to DeviceManager.

5.2.2 Sending Kafka messages

Kafka uses a quite different approach. Each message should be associated to a subject and a tenant. This is show in
Fig. 5.4;

In this example, DeviceManager needs to publish a message about a new device. In order to do so, it sends a re-
quest to DataBroker, indicating which tenant (within JWT token) and which subject (dojot.device-manager.
devices) it wants to use to send the message. DataBroker will invoke Redis to check whether this topic is already
created and check whether dojot administrator had created a profile to this particular tuple {tenant, subject}.

The two profile schemes available are shown in Fig. 5.5 and Fig. 5.6.

The automatic scheme set the number of Kafka partitions to be used to the topic being created, as well as the replication
factor (how many replicas will be there for each topic partition). It’s up to Kafka to decide which partition and replica
will be assigned to which broker instance. You can check Kafka partitions and replicas in order to know a bit more
about partition and replicas. Of course you can check Kafka’s official documentation.

26 Chapter 5. Internal communication

https://sookocheff.com/post/kafka/kafka-in-a-nutshell/#what-is-kafka
https://kafka.apache.org/documentation/

dojot Documentation, Release 0.3.0

Fig. 5.2: Initial authentication

5.2. Messaging and authentication 27

dojot Documentation, Release 0.3.0

Fig. 5.3: Sending messages to HTTP API

28 Chapter 5. Internal communication

dojot Documentation, Release 0.3.0

Fig. 5.4: Retrieving Kafka topics

Fig. 5.5: Automatic scheme profile

Fig. 5.6: Assigned scheme profile

5.2. Messaging and authentication 29

dojot Documentation, Release 0.3.0

The assigned scheme indicates which partition will be allocated to which Kafka instance. This includes also replicas
(partitions with more than one associated Kafka instance).

5.2.3 Bootstrapping tenants

All components are interested in a set of subjects, which will be used to either send messages or receive messages
from Kafka. As dojot groups Kafka topics and tenants into subjects (a subject will be composed by one or more Kafka
topics, each one transmitting messages for a particular tenant), the component must bootstrap each tenant before
sending or receiving messages. This is done in two phases: component boot time and component runtime.

In the first phase, a component asks Auth in order to retrieve all currently configured tenants. It is interested, let’s
say, in consuming messages from device-data and dojot.device-manager.devices subjects. Therefore, it will request
DataBroker a topic for each tenant for each subject. With that list of topics, it can create Producers and Consumers to
send and receives messages through those topics. This is shown by Fig. 5.7.

The second phase starts after startup and its purpose is to process all messages received through Kafka. This will
include any tenant that is created after all services are up and running. Fig. 5.8 shows how to deal with these messages.

All services that are somehow interested in using subjects should execute this procedure in order to correctly receive
all messages.

5.3 Auth + API gateway (Kong)

Auth is a service deeply connected to Kong. It is responsible for user management, authentication and authorization.
As such, it is invoked by Kong whenever an request is received by one of its registered endpoints. This section will
detail how this is performed and how they work together.

5.3.1 Kong configuration

There are two configuration procedures when starting Kong within dojot:

1. Migrating existing data

2. Registering API endpoints and plugins.

The first task is performed by simply invoking Kong with a special flag.

The second one is performed by executing a configuration script kong.config.sh. Its only purpose is to register end-
points in Kong, such as:

(curl -o /dev/null ${kong}/apis -sS -X POST \
--header "Content-Type: application/json" \
-d @-) <<PAYLOAD

{
"name": "data-broker",
"uris": ["/device/(.*)/latest", "/subscription"],
"strip_uri": false,
"upstream_url": "http://data-broker:80"

}
PAYLOAD

This command will register the endpoint /device/*/latest and /subscription and all requests to it are going to be for-
warded to http//data-broker:80. You can check the documentation on how to add endpoints in Kong’s documentation.

For some of its registered endpoints, kong.config.sh will add two plugins to selected endpoints:

30 Chapter 5. Internal communication

https://docs.konghq.com/0.14.x/getting-started/configuring-a-service/

dojot Documentation, Release 0.3.0

Fig. 5.7: Tenant bootstrapping at startup

5.3. Auth + API gateway (Kong) 31

dojot Documentation, Release 0.3.0

Fig. 5.8: Tenant bootstrapping

32 Chapter 5. Internal communication

dojot Documentation, Release 0.3.0

1. JWT generation. The documentation for this plugin is available at Kong JWT plugin page.

2. Configuration a plugin which will forward all policies requests to Auth. will invoke Auth in order to authenticate
requests. This plugin is available in PEP-Kong repository.

The following request install these two plugins in data-broker API:

curl -o /dev/null -sS -X POST ${kong}/apis/data-broker/plugins -d "name=jwt"
curl -o /dev/null -sS -X POST ${kong}/apis/data-broker/plugins -d "name=pepkong" -d
→˓"config.pdpUrl=http://auth:5000/pdp"

Emitted messages

Auth will emit just one message via Kafka for tenant creation:

{
"type" : "CREATE",
"tenant" : "XYZ"

}

5.4 Device Manager

DeviceManager stores and retrieves information models for devices and templates and a few static information about
them as well. Whenever a device is created, removed or just edited, it will publish a message through Kafka. It
depends only on DataBroker and Kafka for reasons already explained in this document.

All messages published by Device Manager to Kafka can be seen in Device Manager messages.

5.5 IoT agent

IoT agents receive messages from devices and translate them into a default message to be published to other compo-
nents. In order to do that, they might want to know which devices are created in order to properly filter messages which
are not allowed into dojot (using, for instance, security information to block messages from unauthorized devices). It
will use the device-data subject and bootstrap tenants as described in Bootstrapping tenants.

After requesting the topics for all tenants within device-data subject, IoT agent will start receiving data from devices.
As there are a plethora of ways by which devices can do that, this step won’t be detailed in this section (this is highly
dependent on how each IoT agent works). It must, though, send a message to Kafka to inform other components of all
new data that the device just sent. This is shown in Fig. 5.9.

The data sent by IoT agent has the structure shown in Fig. 5.10.

Such message would be:

{
"metadata": {

"deviceid": "c6ea4b",
"tenant": "admin",
"timestamp": 1528226137452

},
"attrs": {

"humidity": 60,
"temperature" : 23

(continues on next page)

5.4. Device Manager 33

https://docs.konghq.com/hub/kong-inc/jwt/
https://github.com/dojot/pep-kong
https://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/kafka-messages.html

dojot Documentation, Release 0.3.0

Fig. 5.9: IoT agent message to Kafka

Fig. 5.10: IoT agent message structure

34 Chapter 5. Internal communication

dojot Documentation, Release 0.3.0

(continued from previous page)

}
}

5.6 Persister

Persister is a very simple service which only purpose is to receive messages from devices (using device-data
subject) and store them into MongoDB. For that, the bootstrapping procedure (detailed in Bootstrapping tenants) is
performed and, whenever a new message is received, it will create a new Mongo document and store it into the device’s
collection. This is shown in Fig. 5.11.

Fig. 5.11: Persister

This service is simple as it is by design.

5.7 History

History is also a very simple service: whenever a user or application sends a request to it, it will query MongoDB and
build a proper message to send back to the user/application. This is shown in Fig. 5.12.

5.8 Data Broker

DataBroker has a few more functionalities than only generating topics for {tenant, subject} pairs. It will also
serve socket.io connections to emit messages in real time. In order to do so, it retrieves all topics for device-data

5.6. Persister 35

dojot Documentation, Release 0.3.0

Fig. 5.12: History

36 Chapter 5. Internal communication

dojot Documentation, Release 0.3.0

subject, just as in any other component interested in data received from devices. As soon as it receives a message, it
will then forward it to a ‘room’ (using socket.io vocabulary) associated to the device and to the associated tenant. Thus,
all client connected to it (such as graphical user interfaces) will receive a new message containing all the received data.
For more information about how to open a socket.io connection with DataBroker, check DataBroker documentation.

5.9 Flowbroker

TODO!

5.9. Flowbroker 37

https://dojot.github.io/data-broker/apiary_latest.html

dojot Documentation, Release 0.3.0

38 Chapter 5. Internal communication

CHAPTER 6

Installation Guide

This page contains information about how to deploy dojot using Docker compose. Kubernetes and Google Cloud
Platform support is on track to be implemented.

Table of Contents

• Hardware requirements

• Docker compose

– Docker engine

– Docker Compose

– Installation

– Usage

• Kubernetes

– Kubernetes Cluster

– Kubernetes Requirements

– dojot Deployment

* 1. Cloning the repository

* 2. Installing dependencies

* 3. Configuring the inventory

* 4. Executing the deployment playbook

* 5. Accessing the deployed dojot environment

39

dojot Documentation, Release 0.3.0

6.1 Hardware requirements

In order to properly run dojot, the minimum hardware requirements are:

• 4GB of RAM

• 10GB of free disk space

• Network access

• The following ports should be opened:

– TCP (incoming connections): 1883 (MQTT), 8883 (Secure MQTT if used), 8000 (web interface
access)

– TCP (outgoing connections): 25 (if send e-mail node is used in a flow)

6.2 Docker compose

This document provides instructions on how to create a trivial deployment environment on single host for dojot, using
docker-compose as the processes orchestration platform.

While very simple, this deployment option is best suited to development and assessment of the platform and should
not be used for production environments.

This guide has been checked on an Ubuntu 16.04 LTS environment.

The following sections describe all Docker compose dependencies.

6.2.1 Docker engine

Up to date information and installation procedures for the docker engine can be found at the project’s documentation:

https://docs.docker.com/engine/installation/

Note: An optional step on the installation and configuration process of docker on any given machine is the setting of
who is eligible for creating/spawning docker instances.

Should the post-installation steps (more specifically the “Manage docker as non-root user”) have not been run, all
docker and docker-compose commands should be run by the super user (root), or as sudo.

https://docs.docker.com/engine/installation/linux/linux-postinstall/

6.2.2 Docker Compose

Up to date information and installation procedures for the docker-compose can be found at the project’s documentation:

https://docs.docker.com/compose/install/

6.2.3 Installation

To setup the environment, merely clone the deployment repository and run the commands below.

The docker-compose enabled deployment scripts and configuration repository can be found at:

40 Chapter 6. Installation Guide

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/
https://docs.docker.com/compose/install/

dojot Documentation, Release 0.3.0

https://github.com/dojot/docker-compose

or as git clone command::

git clone https://github.com/dojot/docker-compose.git
Let's move into the repo - all commands in this page should be executed
inside it.
cd docker-compose

Once the repository is properly cloned, select the version to be used by checking out the appropriate tag (do notice
that the tagname has to be replaced):

Must be run from within the deployment repo

git checkout tag_name -b branch_name

For instance:

git checkout v0.3.1 -b v0.3.1

Or if you’re brave enough:

git checkout master

After the repository is cloned, and a release (or branch) has been selected, there are still a few external modules that
must be gathered before using the platform. These modules can be retrieved by executing the following command:

git submodule update --init --recursive

That done, the environment can be brought up by:

Must be run from the root of the deployment repo.
May need sudo to work: sudo docker-compose up -d
docker-compose up -d

To check individual container status, docker’s commands may be used, for instance:

Shows the list of currently running containers, along with individual info
docker ps

Shows the list of all configured containers, along with individual info
docker ps -a

Note: All docker, docker-compose commands may need sudo to work.

To allow non-root users to manage docker, please check docker’s documentation:

https://docs.docker.com/engine/installation/linux/linux-postinstall/

6.2.4 Usage

The web interface is available at http://localhost:8000. The user is admin and the password is admin.
You also can interact with platform using the Components and APIs.

Read the Using API interface and Using web interface for more information about how to interact with the platform.

6.2. Docker compose 41

https://github.com/dojot/docker-compose
https://docs.docker.com/engine/installation/linux/linux-postinstall/

dojot Documentation, Release 0.3.0

6.3 Kubernetes

This section provides instructions on how to create a dojot deployment on a multi-node environment, using Kubernetes
as the orchestration platform.

This deployment option when properly configured can be used for creating production environments.

The following sections describe all dependencies and steps required for this deployment.

6.3.1 Kubernetes Cluster

For this guide it is advised that you already have a working K8s cluster.

If you need to build a Kubernetes cluster from scratch, up to date information and installation procedures can be found
at Kubernetes setup documentation.

6.3.2 Kubernetes Requirements

• The minimum Kubernetes supported version is v1.11.

• Access to Docker Hub repositories

• (optional) a storage class that will be used for persistent storage

6.3.3 dojot Deployment

To deploy dojot to Kubernetes it is advised the use of ansible playbooks developed for dojot. The playbooks and all
the related code can be found on the repository Ansible dojot.

The following steps will describe how to use this repository and its playbooks.

1. Cloning the repository

The first deployment step is cloning the repository. To do so, execute the command:

git clone https://github.com/dojot/ansible-dojot

2. Installing dependencies

The next step is installing the dependencies for running the ansible playbook, this dependencies include ansible itself
with other modules that will be used to parse templates and communicate with kubernetes.

Enter the folder where the repository was downloaded and install the pip packages with the following commands:

cd ansible-dojot
pip install -r requirements.txt

42 Chapter 6. Installation Guide

https://kubernetes.io/docs/setup/
https://github.com/dojot/ansible-dojot

dojot Documentation, Release 0.3.0

3. Configuring the inventory

For deploying kubernetes with ansible, it is necessary to model your desired environment on an ansible inventory.

In the repository there is an ‘inventory’ folder containing an example inventory called ‘example_local’ that can be
used as the starting point to creating the real environment inventory.

The first file that requires changes is the hosts.yaml. This file describes the nodes that will be accessed by ansible to
perform the deployment. As the dojot deployment is done directly to K8s, only a node with access to the kubernetes
cluster is actually required.

The node that will access the cluster might be a kubernetes cluster node that is accessible via SSH or event your local
machine if it can reach the kubernetes cluster with a configuration file.

On the example file, the access is done via a local node, where the ansible script is executed. This node is described
as localhost in the hosts item of the group all.

These same nodes must be added as children of the group dojot-k8s.

To configure a local access on the hosts file, follow the example below:

all:

hosts:
localhost:

ansible_connection: local
ansible_python.version.major: 3

children:
dojot-k8s:

hosts:
localhost:

To configure remote access via ssh to a node of the cluster, follow this other example:

all:

hosts:
NODE_NAME:

ansible_host: NODE_IP
children:
dojot-k8s:

hosts:
NODE_NAME:

The next step is configuring the mandatory and optional variables required for deploying dojot.

There is a document describing each of the variables that can be configured at Ansible dojot variables.

This variables must be set for the group ‘dojot-k8s’, to do so set their values on the file dojot.yaml on the folder
‘group_vars/dojot-k8s/’

4. Executing the deployment playbook

Now that the inventory is set, the next step is executing the deployment playbook.

To do so, run the following command:

ansible-playbook -K -k -i inventories/YOUR_INVENTORY deploy.yaml

Wait for the playbook execution to finish without errors.

6.3. Kubernetes 43

https://github.com/dojot/ansible-dojot/blob/master/docs/vars.md

dojot Documentation, Release 0.3.0

5. Accessing the deployed dojot environment

Dojot access will be set using NodePorts, to view the proper ports to access the environment it is necessary to check
service configuration.

kubectl get service -n dojot kong iotagent-mosca

This command will return the port used for external access to both the REST API and GUI via kong and the MQTT
port via iotagent-mosca.

44 Chapter 6. Installation Guide

CHAPTER 7

Frequently Asked Questions

Here are some answers to frequently-asked questions from users of dojot platform.

Got a question that isn’t answered here? Please, open an issue on dojot’s Github repository.

Table of Contents

• General

– What is dojot? Why should I use it? Why open source it?

– Where can I get it?

– Which repository is the main one?

– So, I found this pesky bug. How can I inform you about it?

• Usage

– How do I start it? Is it CLI-based or it has a graphical user interface?

– Ok, I started it and I logged in. Now what?

– How can I update my deploy to dojot’s latest version?

• Devices

– What are devices for dojot?

– What is the relationship between this device and my actual device?

– What are virtual devices? How are they different from the other one?

– And what are templates?

– How can I send MQTT data to dojot so that it appears on the dashboard?

– On the dashboard some attributes are shown as tables and others as charts. How are they chosen/set?

– I’m interested in integrating my super cool device with dojot. How can I do it?

45

http://github.com/dojot/dojot

dojot Documentation, Release 0.3.0

– Is there any restrictions about the message my device will send to dojot? Format, size, frequency?

– How can I send some commands to my device through dojot?

– I didn’t find the protocol supported by my device in the type list, is there anything I can do?

– I saved an attribute, but it disappeared from the device. Is it a bug?

– How can I retrieve historical data for a particular device?

• Data Flows

– What is data flow?

– The data flow UI. . . really looks like node-RED. Are they related in some way?

– Why should I use it?

– What can it do, exactly?

– So, how can I use it?

– Can I apply the same flow to multiple devices?

– Can I correlate data from different devices in the same flow?

– I want to send an email, what should I do?

– What about a HTTP POST request, how can I send it?

– I want to rename the attributes of a device, what should I do?

– I want to aggregate the attributes of multiple devices, what should I do?

– How can I add a new node type to its menu?

• Applications

– What APIs are available for applications?

– How can I use them?

– I’m interested in integrating my application with dojot. How can I do it?

7.1 General

7.1.1 What is dojot? Why should I use it? Why open source it?

It’s a brazilian IoT platform launched as open source software with aims to ease the development of solutions and the
IoT ecosystem with local resources geared towards brazilians needs.

It takes a role as an enabler platform with:

• Open APIs which makes the access to the platform resources easy.

• Capacity to store large volumes of data in different formats.

• Connectors to different types of devices.

• Graphical user interface with flow builder to quicly prototype IoT solutions.

• Real time event processing with customizable rules.

46 Chapter 7. Frequently Asked Questions

dojot Documentation, Release 0.3.0

7.1.2 Where can I get it?

All components are available in dojot’s GitHub repositories: https://github.com/dojot.

7.1.3 Which repository is the main one?

There are two main ones:

• https://github.com/dojot/dojot: this is where we keep track of all the things related to this project as a whole,
such as architectural enhancements.

• https://github.com/dojot/docker-compose: repository for Docker compose files and configurations. This is what
we would recommend to use to start with.

7.1.4 So, I found this pesky bug. How can I inform you about it?

We ask you to open an issue in dojot’s Github repository. If you know exactly which component is failing, you could
open the issue in its repository (it will work the same way).

If you are able to analyze and fix this bug, please do so. Create a pull-request with a quick description of what you’ve
done.

7.2 Usage

7.2.1 How do I start it? Is it CLI-based or it has a graphical user interface?

dojot can be accessed by a nice web-based interface and by REST APIs. Considering that you installed docker and
docker-compose and cloned the docker-compose repository, starting it up is done by just one command:

$ docker-compose up -d

And that’s it.

The web interface is available at http://localhost:8000. The user is admin, password admin.

REST APIs are explained in the Applications section.

7.2.2 Ok, I started it and I logged in. Now what?

Nice! Now you can add your templates and devices, described in Devices, build some flows and subscribing to device
events, both described in Data Flows.

7.2.3 How can I update my deploy to dojot’s latest version?

You need to follow some steps:

1 Update the docker-compose repository to the cutting-edge version (beware the bug)

$ cd <path-to-your-clone-of-docker-compose>
$ git checkout master && git pull

If you need a more stable version, you could checkout a tag instead:

7.2. Usage 47

https://github.com/dojot
https://github.com/dojot/dojot
https://github.com/dojot/docker-compose
http://github.com/dojot/dojot

dojot Documentation, Release 0.3.0

$ git tag
0.1.0-dojot
0.1.0-dojot-RC1
0.1.0-dojot-RC2
0.2.0-aikido

$ git checkout 0.2.0-aikido -b 0.2.0

Once in a while we’ll release new versions for dojot components. They might be independently released (although
we tend to synchronize all of them). Once we end up with a stable set of component versions, we’ll update the
docker-compose repository.

2 Deploy the latest docker images. This command might need sudo.

$ docker-compose pull && docker-compose up -d

This procedure also applies to the available virtual machines once they do use docker-compose.

7.3 Devices

7.3.1 What are devices for dojot?

In dojot, a device is a digital representation of an actual device or gateway with one or more sensors or of a virtual one
with sensors/attributes inferred from other devices.

Consider, for instance, an actual device with thermal and humidity sensors; it can be represented inside dojot as a
device with two attributes (one for each sensor). We call this kind of device as regular device or by its communication
protocol, for instance, MQTT device or CoAP device.

We can also create devices which don’t directly correspond to their physical counterparts, for instance, we can create
one with a higher level of temperature information (is becoming hotter or is becoming colder) whose values are
inferred from temperature sensors of other devices. This kind of device is called virtual device.

7.3.2 What is the relationship between this device and my actual device?

It is as simple as it seems: the regular device for dojot is a mirror (digital twin) of your actual device. You can choose
which attributes are available for applications and other components by adding each one of them at the device creation
interface.

7.3.3 What are virtual devices? How are they different from the other one?

Regular devices are created to serve as a mirror (digital twin) for the actual devices and sensors. A virtual device is an
abstraction that models things that are not feasible in the real world. For instance, let’s say that a user has few smoke
detectors in a laboratory, each one with different attributes.

Wouldn’t it be nice if we had one device called Laboratory that has one attribute isOnFire? Therefore, the applications
could rely only on this attribute to take an action.

Another difference is how virtual devices are populated. Regular ones will be filled with information sent by devices
or gateways to the platform and virtual ones will be filled by flows or by applications.

48 Chapter 7. Frequently Asked Questions

dojot Documentation, Release 0.3.0

7.3.4 And what are templates?

Templates, simply put, are “blueprints for devices” which serve as basis to create a new device. A single device is
built using a set of templates - its attributes will be inherited from each template (their names must not be exactly the
same, though). If one template is changed, then all associated devices will also be changed.

7.3.5 How can I send MQTT data to dojot so that it appears on the dashboard?

First of all, you create a digital representation for your actual device. Then, you configure it to send data to dojot so
that it matches its digital representation.

Let’s take as example a weather station which measures temperature and humidity, and publishes them periodically
through MQTT. First, you create a device of type MQTT with two attributes (temperature and humidity). Then you
set your actual device to push the data to dojot.

In order to send data to dojot via MQTT (using iotagent-mosca), there are some things to keep in mind:

• The topic should look like /<service-id>/<device-id>/attrs (for instance: /admin/efac/
attrs). Depending on how IoT agent MQTT was started (more strict), the client ID must also be set to
“<tenant>:<deviceid>”, such as “admin:efac”.

• MQTT payload must be a JSON with each key being an attribute of the dojot device, such as:

{ "temperature" : 10.5,"pressure" : 770 }

7.3.6 On the dashboard some attributes are shown as tables and others as charts.
How are they chosen/set?

The type of an attribute determines how the data is shown on the dashboard as follows:

• Geo: geo map.

• Boolean and Text: table.

• Integer and Float: line chart.

7.3.7 I’m interested in integrating my super cool device with dojot. How can I do it?

If your device is able to send messages using MQTT (with JSON payload), CoAP or HTTP, there is a good chance
that your device can be integrated with minor or no modifications whatsoever. The requirements for such integration
is described in the question How can I send MQTT data to dojot so that it appears on the dashboard?.

7.3.8 Is there any restrictions about the message my device will send to dojot?
Format, size, frequency?

None but format, which is described in the question How can I send MQTT data to dojot so that it appears on the
dashboard?.

7.3.9 How can I send some commands to my device through dojot?

For now, you can send HTTP requests to dojot containing a few instructions about which device should be configured
and the actuation payload itself. More details on that can be found in Device-Manager how-to - sending actuation
messages.

7.3. Devices 49

http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/using-device-manager.html#sending-actuation-messages-to-devices
http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/using-device-manager.html#sending-actuation-messages-to-devices

dojot Documentation, Release 0.3.0

7.3.10 I didn’t find the protocol supported by my device in the type list, is there
anything I can do?

There are some possibilities. The first one is to develop a proxy to translate your protocol to one supported by dojot.
The second one is to develop a connector similar to the existing ones for MQTT, CoAP and HTTP.

7.3.11 I saved an attribute, but it disappeared from the device. Is it a bug?

You might have saved the attribute, but not the device. If you don’t click on the save button for the device, the added
attributes will be discarded. We’re improving the system messages to caveat the users and remember them to save
their configurations.

7.3.12 How can I retrieve historical data for a particular device?

You can do this by sending a request to /history endpoint, such as:

curl -X GET \
-H 'Authorization: Bearer eyJhbGciOiJIUzI1NiIsIn...' \
"http://localhost:8000/history/device/3bb9/history?lastN=3&attr=temperature"

which will retrieve the last 3 entries of temperature attribute from the device 3bb9:

[
{
"device_id": "3bb9",
"ts": "2018-03-22T13:47:07.050000Z",
"value": 29.76,
"attr": "temperature"

},
{
"device_id": "3bb9",
"ts": "2018-03-22T13:46:42.455000Z",
"value": 23.76,
"attr": "temperature"

},
{
"device_id": "3bb9",
"ts": "2018-03-22T13:46:21.535000Z",
"value": 25.76,
"attr": "temperature"

}
]

There are more operators that could be used to filter entries. Check History API documentation to check out all
possible operators and other filters.

7.4 Data Flows

7.4.1 What is data flow?

It’s a sequence of functional blocks to process incoming device messages. With a flow you can dynamically analyze
each new message in order to apply validations, infer information and trigger actions or notifications.

50 Chapter 7. Frequently Asked Questions

https://dojot.github.io/history/apiary_latest.html

dojot Documentation, Release 0.3.0

7.4.2 The data flow UI. . . really looks like node-RED. Are they related in some way?

It’s based on the Node-RED frontend, but uses its own engine to process the messages. If you’re familiar with Node-
Red, it won’t be difficult to use it.

7.4.3 Why should I use it?

It allows one of the coolest things of IoT in an easy and intuitive way, which is to analyze data for extracting informa-
tion and then take actions.

7.4.4 What can it do, exactly?

You can do things such as:

• Create views from a particular device, by renaming, aggregating and changing values, etc).

• Infer information based on switch, edge-detection and geo-fence rules.

• Notify through email.

• Notify through HTTP.

The data flows component is in constantly development with new features being added every new release.

There are mechanisms to add new processing blocks to new flows. Check the How can I add a new node type to its
menu? question for more information on that.

7.4.5 So, how can I use it?

It follows the basic usage flow as node-RED. You can check its documentation for more details about this.

7.4.6 Can I apply the same flow to multiple devices?

You can use a template as input to indicate that the flow should be applied to all devices associated to that template.
It’s worth to point out that the flow is processed individually for each new input message, i.e. for each input device.

7.4.7 Can I correlate data from different devices in the same flow?

As the data flow is processed individually for each message, you need to create a virtual device to aggregate all
attributes, then use this virtual device as the input of the flow.

Another thing that you could do is to build a flowbroker node to deal with contexts, which can be used to store and
retrieve data related to a flow or node.

7.4.8 I want to send an email, what should I do?

Basically, you need to add an email node and configure it. This node is pre-configured to use the Gmail server
gmail-smtp-in.l.google.com, but you’re free to choose your own. For writing an email body, you can use a
template before the email.

It is important to point out that dojot contains no e-mail server. It will generate SMTP commands and send them to
the specified e-mail server.

7.4. Data Flows 51

https://nodered.org

dojot Documentation, Release 0.3.0

7.4.9 What about a HTTP POST request, how can I send it?

It is almost the same process as sending an e-mail.

One important note: make sure that dojot can access your server.

7.4.10 I want to rename the attributes of a device, what should I do?

First of all, you need to create a virtual device with the new attributes, then you build a data flow to rename them. This
can be done connecting a ‘change’ node after the input device to map the input attributes to the corresponding ones
into an output, and finally connecting the ‘change’ to the virtual device and assigning to it the output.

7.4.11 I want to aggregate the attributes of multiple devices, what should I do?

First of all, you need to create a virtual device to aggregate all attributes, then you build a data flow to map the attributes
of each device to the virtual one. This can be done connecting a ‘change’ node after each input device to put the input
values into an output, and finally connecting all changes to the virtual device and assigning to it the output.

7.4.12 How can I add a new node type to its menu?

It’s pretty easy, actually, although it needs a few commands in bash. To add a new node, you should send the following
request:

curl -H "Authorization: Bearer ${JWT}" http://localhost:8000/flows/v1/node
-H "content-type: application/json" -d '{"image": "mmagr/kelvin:latest",
"id":"kelvin"}'

This will add a new node called ‘kelvin’ which is implemented by a docker image located at “mmagr/kelvin”. There’s
only one caveat: you should pull this image in your target system (where dojot is installed) before adding it to the flow
menu.

If you don’t want this node anymore, you could delete it:

curl -X DELETE -H "Authorization: Bearer ${JWT}"
"http://localhost:8000/flows/v1/node/kelvin"

And that’s it! In the flowbroker repository, there is an example of how to build a Docker image that could be added to
flow node menu.

7.5 Applications

7.5.1 What APIs are available for applications?

You can check all available APIs in the API Listing page

52 Chapter 7. Frequently Asked Questions

https://github.com/dojot/flowbroker
../components-and-apis.html

dojot Documentation, Release 0.3.0

7.5.2 How can I use them?

There is a very quick and useful tutorial in the Using API interface.

7.5.3 I’m interested in integrating my application with dojot. How can I do it?

This should be pretty straightforward. There are two ways that your application could be integrated with dojot:

• Retrieving historical data: you might want to periodically read all historical data related to a device. This
can be done by using this API (one side-note: all endpoints described in this apiary should be preceded by
/history/).

• Using flowbroker to pre-process data: if you want to do something more, you could use flows. They can help
process and transform data so that they can be properly sent to your application via HTTP request, by e-mail or
stored in a virtual device (which can be used to generate notifications as previously described).

All these endpoints should bear an access token, which is retrieved as described in the question How can I use them?.

7.5. Applications 53

dojot Documentation, Release 0.3.0

54 Chapter 7. Frequently Asked Questions

CHAPTER 8

Release history

8.1 battojutsu - 2018.10.03

• IoT agents:

– Support for sigfox devices

– Support for LoRa devices to be used with EveryNet networks.

– Many improvements for IoT agent MQTT - performance, stability and documentation.

• GUI:

– Map overlays

– Pin color configuration on maps

– Support for more screen resolutions

– Filters (devices, templates)

– Improved pagination

• Flows:

– Support for global contexts: a new service, called ContextManager, was created to deal with contexts
within a flow. They can be thought as data chunks that can be stored and retrieved by ContextManager
when invoked within a flow node. They are split into four different access levels: tenant, flow, node and
node instance. Check flowbroker node library to check how to use context within nodes or check flowbro-
ker’s get-context node to use it directly from flowbroker GUI you could just open the new flowbroker UI
and check it in the node palette)

– New configuration options for device actuation: send actuation message to the same device that triggered
the flow or set which is the targed device dynamically, set while the flow is being processed.

– Support for device information caching (improving performance)

• History:

55

http://github.com/dojot/iotagent-sigfox
http://github.com/dojot/iotagent-lora-everynet
https://github.com/dojot/flowbroker/blob/master/lib/ContextHandler.js
https://github.com/dojot/flowbroker/tree/master/orchestrator/nodes/get-context
https://github.com/dojot/flowbroker/tree/master/orchestrator/nodes/get-context

dojot Documentation, Release 0.3.0

– Support for queries that retrieve all attributes from a particular device (without explicitly selecting which
one should be returned). Check history API for more information.

• DeviceManager:

– Now DeviceManager is able to generate a random key for devices (PSK)

• New libraries:

– New library for dojot modules to accelerate development.

– New log library to standardize all service logs.

56 Chapter 8. Release history

https://dojot.github.io/history/apiary_v1.0.0.html
https://github.com/dojot/dojot-module-nodejs
https://github.com/dojot/dojot-module-logger-nodejs

CHAPTER 9

Using web interface

This tutorial will show how to do basic operations in dojot, such as creating devices, checking its attributes and creating
flows.

Note:

• Who is this for: entry-level users

• Level: basic

• Reading time: 15m

9.1 Device management

This section will show how to manage device. For this tutorial we will show how to add two thermometers and a
virtual device that will represent an alarm system that will monitor both sensors.

As described in Concepts, all devices are based on a template. To create one, you should access the template tab at the
left and then create one new template, as shown below.

Now we have one template from which devices can be “instantiated”. All devices based on it will accept messages via
MQTT that are sent to “/devices/thermometers” topic. To create new devices, you should go back to the devices tab
and create a new device, selecting the templates it will be based on, as shown below.

Note that, when you select the template in the right panel at device creation screen, all attributes are inherited from
that device. You could add more templates as needed, keeping in mind that templates used to compose a device must
not share an attribute with the same name.

Attention: As devices are tightly associated to templates, if you want to remove a template, you should remove
all its associated devices first. If such thing happens the following error message will appear:

57

dojot Documentation, Release 0.3.0

Attention: You can add and remove attributes from templates and they will be immediately available to devices.
In case of new attributes being added, though, you should keep in mind that there must not be any device with
templates which have attributes with same name. If such thing happens, the following message will appear:

58 Chapter 9. Using web interface

dojot Documentation, Release 0.3.0

This snapshot was generated by creating a new template (ExtraTemplate) with one attribute, called level.
Then a new device based on both templates was created and, afterwards a new attribute also called level was
added to ThermTemplate.

When this happens, no modification is applied to the template (no attribute named “level” related to the
“ThermTemplate” is created). However, it remains in the template card so the user can figure out what is hap-
pening. If the user refreshes the page, it will be reverted to what it was before the modification.

Now the physical devices can send messages to dojot. There are few things to pay attention to: as we defined the
MQTT topic (all devices will send to /devices/thermometer topic), the devices must identify themselves using
the client-id parameter from MQTT protocol. Another way of doing that is to just use the default topic scheme
(which is /{SERVICE}/{DEVICE_ID}/attrs.

Just for the sake of simplicity, we’ll emulate one device using mosquitto_pub tool. We set the client-id parameter
by using the -i flag of mosquitto_pub.

Now that we’ve created the sensors, let’s create a virtual one. This will be the representation of a alarm system that
will be triggered whenever something bad is detected to these sensors. Let’s say they are installed in a kitchen. So it is
expected that their temperature readings will be no more than 40C. If it is more than that, our simple detection system
will conclude that the kitchen is on fire. This alarm representation will have two attributes: one for a severity level for
a particular alarm and another one for a textual message, so that the user is properly informed of what’s happening.

Just as for “regular devices”, virtual devices also are based on templates. So, let’s create one, as shown below.

9.1. Device management 59

dojot Documentation, Release 0.3.0

9.2 Flow configuration

Once we’ve created the virtual device, we can add a flow to implement the logic behind the alarm generation. The
idea is: if the temperature reading is less than 40, then the alarm system will be updated with a notification of severity
4 (mildly important) and a message indicating that the kitchen is OK. Otherwise, if the temperature is higher than 40,
then a notification is sent with severity 1 (highest severity) and a message indicating that the kitchen is on fire. This is
done as shown belown.

Note that the “change” nodes have a reference to an “output” entity. This can be thought as a simple data structure - it
will have a message and a severity attributes that match those from the virtual device. This “object” is referenced
in the output node as a data source for the device to be updated (in this case, the virtual device we’ve created). In other
words, you can think of this as a piece of information carried from “change” nodes to the “virtual device” with names
“msg.output.message” and “msg.output.severity”, where “message” and “severity” are the virtual device attributes.

So, let’s send a few more messages and see what will happen to that virtual device.

If you are interested on how to use the data generated by these devices in your application, check the Building an
application tutorial.

60 Chapter 9. Using web interface

CHAPTER 10

Using API interface

This section provides a complete step-by-step tutorial of how to create, update, send messages to and check histor-
ical data of a device. Also, this tutorial assumes that you are using docker-compose, which has all the necessary
components to properly run dojot.

Note:

• Audience: developers

• Level: basic

• Reading time: 15 m

10.1 Getting access token

As said in User authentication, all requests must contain a valid access token. You can generate a new token by
sending the following request:

curl -X POST http://localhost:8000/auth \
-H 'Content-Type:application/json' \
-d '{"username": "admin", "passwd" : "admin"}'

{"jwt": "eyJ0eXAiOiJKV1QiL..."}

If you want to generate a token for other user, just change the username and password in the request payload. The
token (“eyJ0eXAiOiJKV1QiL. . . ”) should be used in every HTTP request sent to dojot in a special header. Such
request would look like:

curl -X GET http://localhost:8000/device \
-H "Authorization: Bearer eyJ0eXAiOiJKV1QiL..."

61

https://github.com/dojot/docker-compose

dojot Documentation, Release 0.3.0

Remember that the token must be set in the request header as a whole, not parts of it. In the example only the first
characters are shown for the sake of simplicity. All further requests will use an evironment variable called ${JWT},
which contains the token got from auth component.

10.2 Device creation

In order to properly configure a physical device in dojot, you must first create its representation in the platform. The
example presented here is just a small part of what is offered by DeviceManager. For more information, check the
DeviceManager how-to for more detailed instructions.

First of all, let’s create a template for the device - all devices are based off of a template, remember.

curl -X POST http://localhost:8000/template \
-H "Authorization: Bearer ${JWT}" \
-H 'Content-Type:application/json' \
-d ' {

"label": "Thermometer Template",
"attrs": [
{

"label": "temperature",
"type": "dynamic",
"value_type": "float"

}
]

}'

This request should give back this message:

1 {
2 "result": "ok",
3 "template": {
4 "created": "2018-01-25T12:30:42.164695+00:00",
5 "data_attrs": [
6 {
7 "template_id": "1",
8 "created": "2018-01-25T12:30:42.167126+00:00",
9 "label": "temperature",

10 "value_type": "float",
11 "type": "dynamic",
12 "id": 1
13 }
14],
15 "label": "Thermometer Template",
16 "config_attrs": [],
17 "attrs": [
18 {
19 "template_id": "1",
20 "created": "2018-01-25T12:30:42.167126+00:00",
21 "label": "temperature",
22 "value_type": "float",
23 "type": "dynamic",
24 "id": 1
25 }
26],
27 "id": 1

(continues on next page)

62 Chapter 10. Using API interface

http://dojotdocs.readthedocs.io/projects/DeviceManager/en/latest/using-device-manager.html#using-devicemanager

dojot Documentation, Release 0.3.0

(continued from previous page)

28 }
29 }

Note that the template ID is 1 (line 27).

To create a template based on it, send the following request to dojot:

1 curl -X POST http://localhost:8000/device \
2 -H "Authorization: Bearer ${JWT}" \
3 -H 'Content-Type:application/json' \
4 -d ' {
5 "templates": [
6 "1"
7],
8 "label": "device"
9 }'

The template ID list on line 6 contains the only template ID configured so far. To check out the configured device, just
send a GET request to /device:

curl -X GET http://localhost:8000/device -H "Authorization: Bearer ${JWT}"

Which should give back:

{
"pagination": {
"has_next": false,
"next_page": null,
"total": 1,
"page": 1

},
"devices": [
{

"templates": [
1

],
"created": "2018-01-25T12:36:29.353958+00:00",
"attrs": {

"1": [
{

"template_id": "1",
"created": "2018-01-25T12:30:42.167126+00:00",
"label": "temperature",
"value_type": "float",
"type": "dynamic",
"id": 1

}
]

},
"id": "0998",
"label": "device_0"

}
]

}

10.2. Device creation 63

dojot Documentation, Release 0.3.0

10.3 Sending messages

So far we got an access token and created a template and a device based on it. In an actual deployment, the physical
device would send messages to dojot with all its attributes and their current values. For this tutorial we will send
MQTT messages by hand to the platform, emulating such physical device. For that, we will use mosquitto_pub from
Mosquitto project.

Attention: Some Linux distributions, Ubuntu in particular, have two packages for mosquitto - one containing
tools to access it (i.e. mosquitto_pub and mosquitto_sub for publishing messages and subscribing to topics) and
another one containing the MQTT broker. In this tutorial, only the tools are going to be used. Please check if
MQTT broker is not running before starting dojot (by running commands like ps aux | grep mosquitto).

The default message format used by dojot is a simple key-value JSON (you could translate any message format to this
scheme using flows, though), such as:

{
"temperature" : 10.6

}

Let’s send this message to dojot:

mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 10.6}'

If there is no output, the message was sent to MQTT broker.

As noted in the Frequently Asked Questions, there are some considerations regarding MQTT topics:

• You can set the device ID that originates the message using the client-id MQTT parameter. It should follow
the following pattern: <service>:<deviceid>, such as admin:efac.

• If you can’t do such thing, then the device should set its ID using the topic used to publish messages. The
topic should assume the pattern /<service-id>/<device-id>/attrs (for instance: /admin/efac/
attrs).

• MQTT payload must be a JSON with each key being an attribute of the dojot device, such as:

{ "temperature" : 10.5,"pressure" : 770 }

For more information on how dojot deals with data sent from devices, check the integrating-physical-devices tutorial.
There you can find how to deal with devices that don’t publish messages in such format and how to translate them.

10.4 Checking historical data

In order to check all values that were sent from a device for a particular attribute, you could use the history APIs. Let’s
first send a few other values to dojot so we can get a few more interesting results:

mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 36.5}'
mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 15.6}'
mosquitto_pub -t /admin/0998/attrs -m '{"temperature": 10.6}'

To retrieve all values sent for temperature attribute of this device:

64 Chapter 10. Using API interface

https://projects.eclipse.org/projects/technology.mosquitto
https://dojot.github.io/history-ws/apiary_latest.html

dojot Documentation, Release 0.3.0

curl -X GET \
-H "Authorization: Bearer ${JWT}" \
"http://localhost:8000/history/device/0998/history?lastN=3&attr=temperature"

The history endpoint is built from these values:

• .../device/0998/...: the device ID is 0998 - this is retrieved from the id attribute from the device

• .../history?lastN=3&attr=temperature: the requested attribute is temperature and it should get
the last 3 values. More operators are available in history APIs.

The request should result in the following message:

[
{
"device_id": "0998",
"ts": "2018-03-22T13:47:07.050000Z",
"value": 10.6,
"attr": "temperature"

},
{
"device_id": "0998",
"ts": "2018-03-22T13:46:42.455000Z",
"value": 15.6,
"attr": "temperature"

},
{
"device_id": "0998",
"ts": "2018-03-22T13:46:21.535000Z",
"value": 36.5,
"attr": "temperature"

}
]

This message contains all previously sent values.

10.4. Checking historical data 65

https://dojot.github.io/history-ws/apiary_latest.html

dojot Documentation, Release 0.3.0

66 Chapter 10. Using API interface

CHAPTER 11

Using flow builder

This tutorial will show how to properly use flow builder to process messages and events generated by devices.

Note:

• Who is this for: entry-level users

• Level: basic

• Reading time: 10 min

11.1 Dojot nodes

• Device in

• Device template in

• http

• Device out

• Actuate

• Change

• Switch

• Template

• Email

• Geofence

• Get Context

67

dojot Documentation, Release 0.3.0

11.1.1 Device in

This node determine an especific device to be the entry-point of a flow. To configure the device in node, a window like
Fig. 11.1 will be displayed.

Fig. 11.1: : Device in configuration window

Fields:

• Name (optional): Name of the node

• Device (required): The dojot device that will trigger the flow

• Status (required): exclude device status changes will not use device status changes (online, offline) to trigger
the flow. On the other hand, include devices status changes will use these status to trigger the flow.

Note: If the the device that triggers a flow is removed, the flow becomes invalid.

11.1.2 Device template in

This node will make that a flow get triggered by devices that are composed by a certain template. If the device template
that is configured in device template in node is template A, all devices that are composed with template A will trigger
the flow. For example: device1 is composed by templates [A,B], device2 by template A and device3 by template B.
Then, in that scenario, only messages from device1 and device2 will initiate the flow, because template A is one of the
templates that compose those devices.

Fields:

• Name (optional): Name of the node.

• Device (required): The dojot device that will trigger the flow.

• Status (required): Choose if devices status changes will trigger or not the flow.

68 Chapter 11. Using flow builder

dojot Documentation, Release 0.3.0

Fig. 11.2: : Device template in configuration window

11.1.3 http

This node sends an http request to a given address, and, then, it can forward the response to the next node in the flow.

Fig. 11.3: : Device template in configuration window

Fields:

• Method (required): The http method (GET, POST, etc. . .).

• URL (required): The URL that will receive the http request

• Request body (required): Variable that contains the request body. This value can be assigned to the variable
using the template node, for example.

• Response (required): Variable that will receive the http response.

• Return (required): Type of the return.

• Name (required): Name of the node.

11.1. Dojot nodes 69

dojot Documentation, Release 0.3.0

11.1.4 Device out

Device out will determine wich device will have its attributes updated on dojot according to the result of the flow.
Bear in mind that this node doesn’t send messages to your device, it will only update the attributes on the platform.
Normally, the chosen device out is a virtual device, which is a device that exists only on dojot.

Fig. 11.4: : Device out config window

Fields:

• Name (optional): Name of the node.

• Device (required): Select “The device that triggered the flow” will make the device that was the entry-point
be the end-point of the flow. “Specific device” any chosen device wil be the output of the flow and “a device
defined during the flow” will make a device that the flow selected during the execution the endpoint.

• Source (required): Data structure that will be mapped as message to device out

11.1.5 Actuate

Actuate node is, basically, the same thing of device out node. But, it can send messages to a real device, like telling a
lamp to turn the light off and etc.

Fig. 11.5: : Actuate configuration

Fields:

• Name (optional): Name of the node.

70 Chapter 11. Using flow builder

dojot Documentation, Release 0.3.0

• Device (required): A real device on dojot

• Source (required): Data structure that will be mapped as message to device out

11.1.6 Change

Change node is used to copy or assign values to an output, i. e., copy values of a message attributes to a dictionary
that will be assigned to virtual device.

Fig. 11.6: : Change configuration

Fields:

• Name (optional): Name of the node

• msg (required): Definition of the data structure that will be sent to the next node and will receive the value set
on the to field

• to (required): Assignment or copy of values

Note: More than one rule can be assign by clicking on +add below the rules box.

11.1.7 Switch

The Switch node allows messages to be routed to different branches of a flow by evaluating a set of rules against each
message.

11.1. Dojot nodes 71

dojot Documentation, Release 0.3.0

Fig. 11.7: : Switch configuration

Fields:

• Name (optional): Name of the node

• Property (required): Variable that will be evaluated

• Rule box (required): Rules that will determine the output branch of the node. Also, it can be configured to
stop checking rules when it finds one that matches other or check all the rules and route the message to the
corresponding output.

Note:

• More than one rule can be assign by clicking on +add below the rules box.

• The rules are mapped one-to-one to the output conectors. Then the first rule is related to the first output, the
second rule to the second output and etc. . .

11.1.8 Template

Note: Despite the name, this node has nothing to do with dojot templates

This node will assign a value to a target variable. This value can be a constant, the value of an attribute that came from
the entry device and etc. . .

It uses the mustache template language. Check Fig. 11.8 as example: the field a of payload will be replaced with the
value of the payload.b

72 Chapter 11. Using flow builder

https://mustache.github.io/mustache.5.html

dojot Documentation, Release 0.3.0

Fig. 11.8: : Template configuration

Fields:

• Name (optional): Name of the node

• Set Property (required): Variable that will receive the value

• Format (required): Format template will be writen

• Template (required): Value that will be assigned to the target variable set on Set property

• Output as (required): The format of the output

11.1.9 Email

Sends an e-mail for a given address.

Fields:

• From (required): The source email.

• To (required): Destination email.

• Server (required): The server of the email destination.

• Subject (required): Subject of the email.

• Body (required): Message on the email. The message can be writen in a variable using the template node, for
example.

• Name (optional): Name of the node.

11.1. Dojot nodes 73

dojot Documentation, Release 0.3.0

Fig. 11.9: : Email configuration

11.1.10 Geofence

Select an interest area to determine wich devices will activate the flow

Fields:

• Area (required): Area that will be selected. It can be chosen with an square or with a pentagon.

• Filter (required): Which side of the area will be picked: inside or outside the marked area in the field above.

• Name (optional): Name of the node

11.1.11 Get Context

This node is used to get a variable that is in the context and assign its value to a variable that will be used in the flow.

Fields:

• Name (optional)*: Name of the node

• Context layer (required)*: The layer of the context that que variable is at

• Context name (required)*: The variable that is in the context

• Context content (required)*: The variable in the flow that will receive the value of the context

11.2 Learn by examples

74 Chapter 11. Using flow builder

dojot Documentation, Release 0.3.0

Fig. 11.10: : Geofence configuration

11.2. Learn by examples 75

dojot Documentation, Release 0.3.0

• Using template and email nodes

• Using http node

• Using geofence node

11.2.1 Using template and email nodes

To explain these nodes, the flow below will be used:

Fig. 11.11: : Flow using template and email nodes

Wonder a system that sends an email to somebody when an order arrive at his mail box. The email would be sent with
the name of the sender, his phone number and the content of the order. A device with the order finder template has the
attributes: sender, phone and content.

The template node will fill the message with the attributes that came in the message. The attributes sent by the
entry-point device can be accessed on the variable payload. So, using the mustache template language, the node
configuration would be like Fig. 11.12.

Then, the email body on the email node should be assigned to the variable that is on the field Set property on Fig.
11.12:

Then, the result of the flow, is an email arrive, problably at the spam box, to the destination address:

11.2.2 Using http node

Imagine this scenario: a device sends an username and a password, and from these attrs, the flow will request to a
server an authentication token that will be sent to a virtual device that has a token attribute.

To send that request to the server, the http method should be a POST and the parameters should be within the requi-
sition. So, in the template node, a JSON object will be assigned to a variable. The body (parameters username and
password) of the requisition will be assigned to the payload key of the JSON object. And, if needed, this object can
have a headers key as well.

Then, on the http node, the Requisition field will receive the value of the object created at the template node. And, the
response will be assigned to any variable, in this case, this is msg.res .

Note: If UTF-8 String buffer is chosen in the return field, the body of the response body will be a string. If JSON
object is chosen, the body will be an object.

As seen, the response of the server is req.res and the response body can be accessed on msg.res.payload. So, the keys
of the object that came on the responsy can be accessed by: msg.res.payload.key. On figure Fig. 11.18 the token that
came in the response is assigned to the attribute token of the virtual device.

Then, the result of the flow is the attribute token of the virtual device be updated with the token that came in the
response of the http request:

76 Chapter 11. Using flow builder

https://mustache.github.io/mustache.5.html

dojot Documentation, Release 0.3.0

Fig. 11.12: : Template configuration

Fig. 11.13: : Email node configuration

11.2. Learn by examples 77

dojot Documentation, Release 0.3.0

Fig. 11.14: : Sent email

Fig. 11.15: : Flow used to explain http node

78 Chapter 11. Using flow builder

dojot Documentation, Release 0.3.0

Fig. 11.16: : Template node configuration

Fig. 11.17: : Template node configuration

11.2. Learn by examples 79

dojot Documentation, Release 0.3.0

Fig. 11.18: : Template node configuration

Fig. 11.19: : Device out configuration

80 Chapter 11. Using flow builder

dojot Documentation, Release 0.3.0

Fig. 11.20: : Device updated

11.2.3 Using geofence node

A good example to learn how geofence node works ia studying the flow below:

Fig. 11.21: : Flow using geofence

The geofence node named in area is set like seem in Fig. 11.22. The only thing that diffs the geofence nodes in area
from out of the area is the field Filter that, in the first, is configured to only points inside and only points outside in the
second, respectively.

Then, if the device that is set as device in sends a messagem with a geo attribute the geofence node will evaluate the
geo point acoording to its rule and if it matches the rule, the node forward the information to the next node and, if not,
the execution of the branch, which has the geofence that the rule didn’t match, stops.

Note: To geofence node work, the messege received should have a geo attribute, if not, the branches of the flow will
stop at the geofence nodes.

Back to the example, if the car sends a message that he is in the marked area, like { "position": "-22.
820156,-47.2682535" }, the message received in device out will be “Car is inside the marked area”, and, if it
sends {"position": "0,0"} device out will receive “Car is out of the marked area”

11.2. Learn by examples 81

dojot Documentation, Release 0.3.0

Fig. 11.22: : Geofence node configuration

Fig. 11.23: : Template node configuration if the car is in the marked area

82 Chapter 11. Using flow builder

dojot Documentation, Release 0.3.0

Fig. 11.24: : Output in device out

11.2. Learn by examples 83

	Architecture
	Components
	Infrastructure
	Communications

	IoT Agent architecture
	TODO
	Who should read this?
	Introduction
	Device security
	Information context separation
	IoT agent information and management
	IoT agent operation
	Behavior

	Concepts
	dojot basics

	Components and APIs
	Components
	Exposed APIs
	Kafka messages

	Internal communication
	Components
	Messaging and authentication
	Auth + API gateway (Kong)
	Device Manager
	IoT agent
	Persister
	History
	Data Broker
	Flowbroker

	Installation Guide
	Hardware requirements
	Docker compose
	Kubernetes

	Frequently Asked Questions
	General
	Usage
	Devices
	Data Flows
	Applications

	Release history
	battojutsu - 2018.10.03

	Using web interface
	Device management
	Flow configuration

	Using API interface
	Getting access token
	Device creation
	Sending messages
	Checking historical data

	Using flow builder
	Dojot nodes
	Learn by examples

